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We make a quantitative comparison between the predictions of the Becker- 
Dgring equations and computer simulations on a model of a quenched binary 
A-B alloy. The atoms are confined to the vertices of a simple cubic lattice, 
interact through attractive nearest neighbor interactions, and move by inter- 
changes of nearest neighbor pairs (Kawasaki dynamics). We study in particular 
the time evolution of the number of clusters of A atoms of each size, at four 
different concentrations: PA = 0.035, 0.05, 0.075, and 0.1 atoms per lattice site. 
The temperature is 0.59 times the critical temperature. At this temperature the 
equilibrium concentration of A atoms in the B-rich phase is O~ q =  0.0145 
atoms/lattice site. The coefficients entering the Becker-Dgring equations are 
obtained by extrapolation from previously published low-density calculations, 
leaving the time scale as the only adjustable parameter. We find good agreement 
at the three lower densities. At 10% density the agreement is, as might be 
expected, less satisfactory but still fairly good--indicating a quite wide range of 
utility for the Becker-Dgring equations. 

KEY WORDS: Kinetics; Becker-Doring equations; clusters; computer 
simulation. 

1. I N T R O D U C T I O N  

T h e  t i m e  e v o l u t i o n  of  m a c r o s c o p i c  s y s t e m  f r o m  a spa t i a l l y  u n i f o r m  n o n -  

e q u i l i b r i u m  s t a t e  to  a n o n u n i f o r m  e q u i l i b r i u m  s ta te ,  c o n s i s t i n g  of  two  
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spatially segregated coexisting phases, is a problem of both theoretical and 
practical interest. Examples of such phenomena are the condensation of 
liquid droplets from a supersaturated vapor and the segregation by coarsen- 
ing of binary alloys quenched into the miscibility gap. Our theoretical 
understanding of these phenomena owes much to the ideas of Becker and 
D6ring. They put forward a system of kinetic equations (1-3) which is 
intended to describe the time evolution of the size distribution of clusters of 
minority atoms, assuming the concentration of these atoms to be small. 

Past comparisons between the Becker-D6ring (BD) theory and obser- 
vation have been limited to finding the "cloud point," that is, the largest 
density at which a metastable state is possible. While this involves some 
extrapolation, the agreement is very satisfactory, (4) and encourages confi- 
dence in the theory. This test alone is, however, insufficient to confirm the 
details of the theory; many features of the kinetics hardly enter into the 
determination of the cloud point. We therefore felt it worthwhile to test the 
BD theory more carefully, by comparing its predictions with the results of 
Computer simulations. Such computer "experiments," although they are 
based on a very simplified version of reality, have some advantages over 
real experiments. One of these is that, if the density of one of the types of 
atom is fairly small, the size distribution of clusters of such atoms can be 
observed as the system evolves. The observed behavior of this distribution 
can then be compared with the predictions of the BD kinetic equations. 

Until recently, quantitative comparisons of this kind were greatly 
hampered because the equations contain a very large number of unknown 
coefficients. Recent work (5) has made it possible, however, to calculate 
values for these coefficients with some degree of confidence: For the 
coefficients in the equations relating to small clusters (six particles or less) 
these values were obtained by microscopic calculation, and values for 
larger clusters can then be obtained by extrapolation. Using these values, 
therefore, it is now possible to make a detailed comparison between the 
Becker-D6ring equations and the simulations, with a view to identifying 
the conditions under which these equations, and the assumptions made in 
calculating the coefficients in them, are valid. It is the purpose of this paper 
to make such a comparison. 

The simulation runs we discuss correspond to a binary alloy on a 
simple cubic lattice with attractive nearest neighbor interactions. The 
system is quenched from a very high temperature to a temperature 0.59 T c, 
at various overall concentrations of minority atoms: p = 0.035, 0.05, 0.075, 
and 0. I0. All these concentrations lie between the concentrations of the two 
phases that can coexist in equilibrium at this temperature; these concentra- 
tions are 0.0146 and 1 -  0.0146 = 0.9854. Therefore each one of our 
simulation runs is tending towards an eventual equilibrium in which these 
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two phases coexist in quantities which, for sufficiently large systems, can be 
calculated from the lever rule. Our interest is in what happens on the way 
to this final equilibrium. 

For reasons which have been discussed elsewhere, ~6i the cluster picture 
underlying the Becker-D6ring kinetic equations can be a good description 
only if the density (concentration) of minority atoms is well below the 
percolation density, at which a single cluster incorporating a finite fraction 
of the minority atoms appears soon after the quench or even before it. ~v) 
Even for infinite temperatures, the percolation density is about 30%; and at 
the lower temperature considered here, which was 0.59Tc, the density at 
which a percolating cluster appears immediately after quenching is less 
than 20%. We therefore did not consider any densities above 10% in the 
work reported here. 

The method by which the runs were obtained is described in Refs. 6 
and 8. In Ref. 8 the runs at 5%, 7.5%, and 10% were referred to as Pi ,  P2, 
and P3. Their durations were 14000, 10200, and 7200 (the time unit being 
one attempted interchange per site). The run at Y5%, which was not 
discussed in Ref. 8, lasted for 16300 attempted interchanges per site. 

For the run at 7.5% concentration a comparison with the Becker- 
D6ring equations has already been made in Ref. 5. The method of 
comparison used here differs from the one used in Ref. 5 in two main 
respects. One is that here we do not make use of the auxiliary time- 
dependent parameter l*, the critical cluster size; this is because there is, in 
general, no unambiguous method of defining l*. The other is that here we 
have not carried out any time averaging of the data before comparing them 
with the BD predictions; this makes it possible to include in our analysis 
the rapid changes occurring during the first 300 or so attempted inter- 
changes per site. 

2. THE B E C K E R - D ( ~ R I N G  E Q U A T I O N S  

The basic ideas of the BD theory as developed in Refs. 1-3 and 5 are 
(a) that cluster sizes evolve by the absorption and evaporation of mono- 
mers, (b) that the rates of these processes are controlled by the diffusion of 
monomers, (c) that the monomers near a large cluster are in some sort of 
local steady state, i.e., the concentration of monomers near a droplet and 
thus their influx is governed by a finite-difference equation similar to the 
Laplace equation, and (d) that there is no other spatial correlation between 
clusters. These assumptions are incorporated into the BD equations, which, 
in the form we shall use in this paper, are 

de, 
d t  - J , - 1  - J ,  ( l  ~ 2) (2.1) 
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where 

Jz = a,c]cl - . b z + , c z + l  ( l  >>- 1) (2.2' 

and c 1 is determined from the condition 

~,, l c t=  0 = const (2.31 
l = l  

Here c t is the concentration of/-particle clusters at time t, 0 is the overall 
concentration of particles (i.e., of minority atoms), and the kinetic coeffi 
cients a t, bl+ j are independent of t, though they may depend on the overall 
density O- 

The BD theory can be expected to be accurate only in the limiting cas~ 
of zero density and then only after the system has evolved for a sufficientl 3 
long time to establish the local steady state near each of the larger clusters 
In this limit the kinetic coefficients a t and b t can in principle be computec 
exactly. The method of doing these calculations, and some results for small 
values of l, are given in Ref. 5. For the temperature 0.59Tc, the results car 
be summarized by the approximate formulas 

a t ~ D(874 + 1888l) '/3 (0---~ 0, l < 6) (2.4' 

b t + , / a  t = w t (O---~ 0) (2.5~ 

where D = 1/6 is the zero-density diffusion constant and 

[ 2"415 1 ( 3 < / < 9 )  (2.6' wt = Q t / Q t + ]  ~- w,  1 + ( l  - 2) 1/3 

with 

w s = 0.010526 (2.7~ 

Here Qt is the cluster partition function defined (for any temperature T) by 

Qt = ~ e -  e(~z)/kr (2.81 
K 

where the sum goes over all translationally inequivalent/-particle cluster., 
K ,  E ( K )  is the energy of cluster K, and k is Boltzmann's constant. 

2.1. Extrapolation to Larger l 

Before the Becker-D6ring equations can be used in practical calcula. 
tions, these results must be extended to larger values of l and to nonzerc 
densities. For the extension to larger l, direct calculation--though possibk 
in principle--is prohibitively laborious. A natural alternative is to use thc 
formulas in (2.4) and (2.6) for extrapolation, by assuming them to hold fol 
all values of l. Extrapolation is a risky procedure at the best of times, bul 
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we can give it some measure of justification here by two kinds of argument. 
One is that the behavior of the formulas to leading order in l is what we 
expect from theory. The other is that there is some agreement between the 
extrapolation and existing information obtained from computer simula- 
tions. 

In the case of the formula for w~, Eq. (2.6), we can check its predic- 
tions for large l against those of the standard model used in nucleation 
theory (2) for temperatures not too close to T C. That model, treating a 
cluster of size l as a spherical droplet, gives 

log Qt = - F J  k T  = - ( I ~1 + "~A, + . .  �9 ) / k T  (2.9) 

where F l is the free energy of a droplet of size l, t~ is the chemical potential 
on the coexistence line in the phase diagram, y is the surface tension of the 
droplet, and Az is its area. For a spherical droplet the area is 

A t=4~rRl 2=4~r(  3/ )2/3 
I 4~r0t (2.10) 

where R~ is the radius of the droplet and 0t is the density within the droplet. 
If we assume 0l to be independent of l, setting 0~ = Od = const, we obtain 
from (2.9) and (2.10) 

w, = Q , / Q , + ,  ~ exp[/~ + y(A,+, - A , )  + . . .  ] / k r  

~ e  ~/~r l +  3 k T \ 4 - ~ O ~  l - 1 / 3 +  . . .  (2.11) 

The asymptotic form of the extrapolation formula (2.6), 

wl = ws[1 + 2.415l-1/3 + . . . .  ] (2.12) 

thus agrees with this theoretical prediction to the extent that the leading 
powers of l are the same. 

The l - I / 3  power in (2.12) also agrees with the result of Aizenman, 
Delyon, and Souillard (16~ that c t ~ c o n s t e x p ( - c o n s t l  2/3) for phase co- 
existence at low temperatures, which indicates [see Eq. (2.14) below] 
that Qt~(const) texp(-const l2/3) ,  and hence, analogously to (2.11), wt~  
const exp(const l - 1/3). 

On the other hand the coefficients in (2.12) do not agree perfectly with 
(2.9), for example at the temperature T = 0.59 T~, which was chosen so as to 
make i ~ / k T = - 4 . 5  exactly on the coexistence line in the cubic Ising 
model, we have e~/~r = e - 4 " 5  = 0.01111 . . . .  whereas w, as given by Eq. 
(2.7) is about 5 �89 % smaller. This particular discrepancy is related to the fact 
that the saturation density at this temperature, though small (0.0146), is not 
completely negligible, and the relation between w s and the fugacity z 
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= e I~/kT involves (6) a factor which at low densities is well approximated b3 
( 1 -  0) 4, i.e., ( 1 -  0.0146) 4 which is about 5�89 less than 1. [For furthe~ 

details of this correction, see Section 3 of Ref. 6; but note that the relation~ 
between w and z are erroneously given there with a negative exponent fo~ 
O. For example the approximation given there as w ~ z(1 - 0) -4  is actuall3 
w ~ z ( 1  - 0)4.1 

A quantitative comparison of the coefficient of I -~/3 in (2.11) ant 
(2.12) is more difficult since we do not know Oa and there are no accurat~ 
values for y. Stauffer e t a / . ,  (9) working from nucleation rates for metastabk 
states, deduce that the quantity F = (36~r ) l / 3y / kTo~ /3  has a value close t( 
3; this corresponds to a value of 2 for the coefficient of l -~/3 in (2.11) 
agreeing moderately well with the coefficient 2.415 in Eq. (2.12). A mor~ 
direct approach is to use simulation or series data for y directly in (2.11) 
From the results of Leamy et al. (~~ we estimate that y / k T  ~- 0.5 so that th~ 
coefficient of 1-1/3  in (2.11) is about 4 / 3 ~ r ( 3 / 4 7 r p d ) 2 / 3 ~  1.610a-2/3; thi~ 
agrees with (2.12) if we take Oa ~ 0.5: 

For a more thorough test of the proposed extrapolation formula for wz 
we may compare the predictions of this extrapolation with cluster concen 
trations observed in computer simulations of systems in equilibrium ol 
metastable equilibrium. The most extensive such simulations are thos{ 
reported by Stauffer et al. (,9) In the Becker-D6ring equations the conditior 
for equilibrium is Jl = 0 which, by (2.2) and (2.5), is equivalent to 

clot = wlcl+ 1 (2.13) 

The statistical errors in the observed values of c t for large I are too large tc 
make a direct test of (2.13) useful; instead we replace (2.13) by the 
equivalent formula 

c t = Qtw l (2.14) 

where w is a parameter which in the absence of statistical and finite-density 
errors would be equal to e 1. Table I shows a test of this equation, usin8 
values of c~ taken from the computer simulations of Stauffer et al., (91 

the values of Ql predicted by the extrapolation of w l using Eq. (2.6), and a 
value of w obtained from the slope of a graph of l o g ( c t / Q t  ) against l. 
The values of c t correspond to a dimensionless magnetic field h - -  0.44; this 
value was chosen because it is large enough to provide measurably large 
cluster concentrations up to the largest cluster size considered by Stauffer et 
al., which was 65, yet small enough for this cluster size to be well below the 
critical cluster size which according to formula (3) of Ref. 9 is about 94 
at this reduced magnetic field. The value of w used was e x p ( - 4 . 1 5 ) =  
0.01576. Having regard to the random statistical errors affecting the values 
of e t, the agreement in the extrapolation range 10 < l ~< 65 does not 
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Table I, Test of the Extrapolation Formula (2.6) for Qz/Q/+  1 

by Comparing Observed Values for C z with 
Those Predicted by Eq. (2.14) 

1 In  c t i n  Qz i n  Qzw z E r r o r  

1 - 4 . 2 5  0 - 4 . 1 5  0 .1  

2 - 5 . 8 3  2 . 5 9 9  - 5 . 7 0  0 . 1 3  

3 - 6 . 8 9  5 . 7 0 8  - 6 . 7 4  0 . 1 5  

4 - 7 . 6 9  9 . 0 6 9  - 7 . 5 3  0 . 1 6  

5 - 8 . 3 6  1 2 . 5 5 3  - 8 . 2 0  0 . 1 6  

6 - 8 . 9 5  1 6 . 1 2 2  - 8 . 7 8  0 . 1 7  

7 - 9 . 4 6  1 9 . 7 5 0  - 9 . 3 0  0 . 1 6  

8 - 9 . 9 4  2 3 . 4 2 4  - 9 . 7 8  0 . 1 6  

9 - 1 0 . 3 8  2 7 . 1 3 3  - 1 0 . 2 2  0 . 1 6  

10  - 1 0 . 7 6  3 0 . 8 7 0  - 1 0 . 6 3  0 . 1 3  

11 - 1 1 . 1 7  3 4 . 6 3 2  - 1 1 . 0 2  0 . 1 5  

12  - 1 1 . 4 9  3 8 . 4 1 5  - 1 1 . 3 9  0 . 1 0  

13 - 1 1 . 8 6  4 2 . 2 1 7  - 1 1 . 7 3  0 . 1 3  

2 0  - 1 3 . 6 2  6 9 . 2 2 1  - 1 3 . 7 8  - 0 . 1 6  

2 5  - 1 5 . 0 2  8 8 . 8 0 6  - 1 4 . 9 4  0 . 0 8  

3 0  - 1 6 . 1 2  1 0 8 . 5 6 4  - 1 5 . 9 4  0 . 1 8  

3 5  - 1 6 . 7 6  1 2 8 . 4 5 7  - 1 6 . 7 9  - 0 . 0 3  

4 0  - 1 7 . 8 7  1 4 8 . 4 6 2  - 1 7 . 5 4  0 . 3 3  

4 5  - 1 8 . 5 2  1 6 8 . 5 6 0  - 1 8 . 1 9  0 . 3 3  

5 0  - 1 8 . 6 1  1 8 8 . 7 3 8  - 1 8 . 7 6  - 0 . 1 5  

5 5  - 1 9 . 2 1  2 0 8 . 9 8 6  - 1 9 . 2 6  - 0 . 0 5  

6 0  - 2 1 . 0 1  2 2 9 . 2 9 7  - 1 9 . 7 0  1 .31  

6 5  - 2 0 . 3 1  2 4 9 . 6 6 4  ~ 2 0 . 0 9  0 . 2 2  

compare unfavorably with that in the range 1 < l < l0 where Qz is known 
exactly. 

2.2. Extrapolation of the Formula for a t to Larger 1 

Let us now consider the extrapolation of the formula for a z, Eq. (2.4), 
to values of l larger than 6. To check the leading power of l we again 
assume that an/-particle cluster can be modeled as a spherical droplet of 
radius R 1. The theory of Lifshitz and Slyozov ~1'3'5) gives 

az~4~DR , (large l) (2.15) 

where D is the diffusion constant for monomers. In our simulations the 
low-density value of D is (14) 1/6, giving 

a , ~ - ~ (  3l .~1/3= 1.3p: 1/3l'/3 (2.16) 
4-Gp  j U \ 
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Eq. (2.4), extrapolated to large values of l, gives 

a t~2.06l  i/3 (2.17) 

so that (2.4) and (2.17) can be made to agree for large ! by assuming 
Oa = (1.3/2.06) 3=  0.25. This agrees moderately well with the value Oa = 

0.35 estimated from surface tension data earlier in this paper. Another 
estimate of Oa with which to compare these values is the one obtained by 
Fratzl e t a / .  (12) from an analysis of the structure functions in the same 
simulations. Equation (3.5) of their paper corresponds to the estimate 
Oa ~ 0.5. There are, it is true, grounds for doubting the assumption of 
spherical clusters, (3) but at present not enough is known about the shapes 
of large clusters to lead to a useful formula to replace the simple l i/3 law 
predicted by (2.4) or (2.17). 

Some further support to the l ]/3 hypothesis is given by the analysis 
carried out previously by us (]4) on the time-dependent distribution of large 
clusters observed in the simulation run at 7.5% density. In that analysis a 
quantity A was defined by 

A = 2.415ws(1 - p)3o~ (2.18) 

where p is the density, 2,415w s is the coefficient of l - ] / 3  in (2.6), and c~ is 
defined by a ~ e d ] / 3 ;  it was found that the simulation data for times 
between about 1000 and 6000 attempted interchanges per site indicated a 
value A -- 0.15, which corresponds to c~ = 7.5, i.e., 

a z ~  7.5 l ]/3 (2.19) 

The fact that the analysis worked at all is some confirmation for the l 1/3 
law; the fact that this "observed" coefficient of l 1/3 is 3 or 4 times as big as 
the extrapolated value has already received some discussion in Ref. 5 and 
we shall return to it. 

2.3. Corrections for Nonzero Density 

It remains to discuss the modifications of our extrapolation formulas 
(2.4) and (2.6) made necessary by the fact that the density is not zero. In 
the case of the formula for w z, we shall follow the convention used in Ref. 5 
which is to leave w t unaltered but to multiply it in the right-hand side of 
(2.5) by a power of 1 - O ;  the replacement used there, derived from the 
empirical formula for equilibrium cluster numbers given in Ref. 6, is 

b,_+, _ I(1 - p)~w, (t = I) (2.20; 

a, [(1 0)3wt (l >~ 2) 

An alternative replacement, based on the more accurate empirical formula 
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for the equilibrium cluster numbers given by Marro and Toral (15) would be 

t( 
1 - 0)% (Z l )  

bt+' - (1 O)Z75wl (l = 2) (2.21) 
al 

(1 o)325w, 
However, we found that replacing (2.20) by (2.21) affected the solution to 
the BD equations by an amount which was small in comparison with the 
differences between these solutions and the simulation data; consequently, 
we used the simpler formula (2.20) for our main series of BD runs which is 
reported in this paper. 

The extrapolation of Eq. (2.20) to large values of l can be tested 
against simulation data in the same way as that of Eq. (2.5): by comparing 
it with the simulation data of Stauffer et a/. (9) recorded in Table I. The 
analog of Eq. (2.14) is now 

c, = (1 - p) 4 Q,w l (I >1 2) (2.22) 

where w is a parameter which in the absence of statistical errors would be 
equal to Cl(1 - 0) -3. This formula can be tested using the data in Table I. 
The appropriate value of 0, deduced from the cluster concentrations 
observed in the simulation, is 0.029, and so the values of ln[(l - o ) 4 Q w  l] 
can be obtained by adding ln(1 - 0.029) 4 = -0 .12  to the values of In Qlw l 
given in the table. Values for the error ln[(1-p)4Qiwl ] - l n c  t can be 
obtained by adding -0 .12  to the numbers in the column marked "error." 
For l < 13 these error values are clearly smaller than the ones shown in the 
table which apply to the p = 0 formula (2.14). For larger values of l the 
comparison is more difficult, since neither formula fits the data very 
accurately, but the change from (2.14) to (2.22) reduces the magnitudes of 
more errors than it increases. Probably these errors are mainly statistical 
errors in the data, and so the extrapolation of Eq. (2.20) to large values of l 
does not appear to be inconsistent with the information given by the 
simulation. 

Finally we consider what change should be made in Eq. (2.4), the 
formula for at, when the density is finite. At finite densities the transport of 
matter in the neighborhood of a given large cluster is due not only to the 
diffusion of monomers but also to processes involving dimers, trimers, etc. 
Therefore we may expect this transport to be faster than in the zero-density 
limit, when the numer of dimers, trimers, etc. is negligible. In the absence of 
any quantitative theory of such effects we took them into account by the 
expedient of allowing the factor D in Eq. (2.4) to depend on the density in a 
purely empirical way; that is, we treated D as an adjustable parameter 
whose value was chosen separately at each density considered so as to give 
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the best agreement between the BD equation and the simulation data. This 
procedure, while not totally successful in the case of the runs at density 
10%, is simple to apply to data plotted on a logarithmic time scale, and is 
much more consistent with the data than the alternative suggestion made in 
Ref. 5 of allowing D to depend on c 1 rather than on the overall density. 

3. THE CALCULATIONS 

For our numerical calculations we used the Becker-D6ring equations 
(2.1)-(2.3), with a l given by (2.4) and b l by (2.6) with (2.20). They were first 
reduced to a finite system by choosing a suitable integer L, setting JL = 0, 
and treating (2.1) as a system of equations for the L - 1 variables c 2 . . .  c L 

[since c I can be expressed in terms of c 2 . . .  c L using (2.3)]. It is not 
necessary for L to be constant: it can increase with t, and when it increases 
the new variables c t created thereby can initially be set equal to zero. The 
equations were solved using the trapezoidal method, the nonlinear system 
of L - 1 algebraic equations arising at each step being solved iteratively by 
the Newton-Raphson  method, using the values from the previous step as 
first approximation. Provided L was chosen large enough at each time step 
to make c L negligibly small, only one Newton-Raphson  iteration was 
usually necessary. For small values of t step sizes as small as 0.01 were 
used, but then L could be chosen quite small, e.g., 20 or 50, so that the 
amount  of time required to advance the calculation to the next required t 
value was less than a minute. For larger values of t (1000 or more) it was 
generally necessary to user larger values of L (up to 3000), but by this time 
step sizes as large as 100 or even more were practicable without instability 
or serious loss of accuracy, so that the calculations still went fairly quickly. 
They were carried out on the VAX-11/780 computer at Rutgers University. 

4. COMPARISON OF THEORY AND S IMULATION 

4.1. Density 3.5% 

Table II  shows data from our simulation run at density 3.5%, the 
earlier part  of which has already been described qualitatively by Kalos e t  

a l .  (6~ In our tables and figures, the symbol c l means the number  of clusters 
on the 50 • 50 • 50 lattice used for our simulations; this is 125000 times 
as large as the quantity denoted by c l in Section 2 of the paper. The nota- 
tion cff means the number  of clusters of sizes l through m, i.e., c t + 
cl+ 1 + " " " + cm ; and N~  means the number  of particles in clusters of sizes 
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I through m, i.e., le t + ( l  + 1)et+t + " " " + mCm" Started at time 0 from a 
distribution corresponding to infinite temperature, the system settles down 
after about 1000 time steps into a state where few large clusters are presenl 
and no systematic change with time is discernible, even though the simula. 
tion was continued out to time 16300. That is, we have a one-phase state, 
apparently stationary; yet the density 3.5% is well above the maximum 
density (1.46%) that is possible for a single low-density phase in equilibrium 
at this temperature. We therefore interpret the state attained by the system 
after time 1000 as a metastable state. 

A comparison of these data with the prediction of the Becker-D6rin~ 
equations is shown in Fig. 1. The time axis used for plotting the Becker- 
D6ring equations has been shifted by a factor of 2.5; this is equivalent tc 
saying that the factor D used in Eq. (2.4) is given the value 5/12 in place of 
1/6. With this modification, and having regard to the large fluctuations in 
the value of el 2~ the BD equations agree well with the simulation results 
over a wide time range from about 5 attempted interchanges per site tc 
about 10000. The largest systematic discrepancy is the behavior of c 2 foi 
times less than 10: the BD equations overestimate some of the values of cz 
in this time range by 10% to 20%. 

3000 ~- 

x 

25OO 

2OOO 

15oo  
I 

1000 

5OO 

Fig. 1. 

Cl 

C 2 

10 100 loo0 10000 loo 000 t 

(a) 

Comparison of simulation data (crosses) with predictions of the Becker-Doring 
equations (curves) at 3.5% density. 
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Table IlL SimulaUonData at Density5% 

t Cl c2 c3 c4 s s c7 e8 c9 Clo 

0 4589 584 115 24 4 3 2 0 0 0 
5.6 2580 703 311 131 66 28 21 7 4 3 

12.0 2264 594 284 161 82 54 21 20 11 3 
18.7 2203 590 261 144 81 66 29 13 13 8 
25.4 2220 566 249 130 85 39 39 19 17 10 
39.2 2133 529 235 126 67 49 36 28 17 12 
53.2 2090 502 213 134 72 53 35 21 16 23 
81.6 2059 507 217 91 71 45 25 29 22 16 
96.0 2085 482 201 99 75 41 30 21 19 15 

155 1925 464 197 107 73 42 23 22 17 14 
200 1931 463 209 91 64 35 36 16 18 17 
304 1987 430 202 84 65 36 27 19 15 9 
500 1884 448 177 103 62 31 21 15 9 5 
743 1980 428 173 82 58 39 21 18 15 6 

1003 1992 464 170 102 58 22 21 18 8 12 
1506 1894 463 160 70 34 37 17 19 11 II 
2004 . 1909 433 162 70 35 25 18 13 10 12 
3008 1858 393 152 75 39 26 17 16 11 6 
4997 1794 368 109 50 38 16 14 11 4 3 
7496 1657 306 88 47 32 12 2 3 2 1 

10000 1585 276 86 42 13 14 2 2 3 2 
13976 1551 297 83 40 10 8 4 1 2 0 

Although the Becker-D6ring equations reproduce the observed cluster 
size distributions quite well for t < 10,000, it is not so clear whether they 
would do so for larger times. The equat ions  show a slow but steady 
decrease in c~, the number of  monomers, during the time interval from 
about 100 to 10,000 at a rate of roughly 1 monomer per 300 time steps. 
Since there are only about 2000 monomers present, this decrease indicates 
that the lifetime of the metastable state cannot be more than 2000 • 300 
= 600,000 time steps, and in fact the equations show cj changing more 
rapidly after about 10,000 time steps so that the metastable state may be 
said to cease a t  about this time. This behavior is clearly shown by the third 
graph in Fig. 1, according to which N1~ I, the number of particles in clusters 
sized at least 101, which should be very small for a metastable state, grows 
rapidly after time 10,000. The simulations neither confirm nor contradict 
this picture. One would expect an eventual break-up of the metastable 
state, but there is no evidence foreshadowing it in the simulation data up to 
time 16288, so that the lifetime of the metastable state in this particular run 
may be considerably greater than that indicated by the BD equations. 
Possibly the finite size of the system used in the simulation run makes 
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Table III. (Continued) 

50 cll00 500 00 Nil0 NI210 t 4 0 o~ ~ o~, ~,o, O~o, N~ ~ N ~  N,5o~ N5% 

413 

0 5321 0 0 0 0 6250 0 
5.6 3854 3 6210 40 

12.0 3494 10 6118 132 
18,7 3408 17 6047 203 
25.4 3374 21 1 5956 272 22 
39.2 3232 36 0 5778 472 0 
53.2 3159 35 3 5734 450 66 
81.6 3082 51 3 5478 688 84 
96.0 3068 60 3 5368 805 77 

155 2884 60 10 5119 863 268 
200 2880 52 16 5090 740 420 
304 2874 48 25 4896 705 649 
500 2755 52 28 2 4617 696 818 
743 2820 40 25 4 4693 577 754 

1003 2867 37 15 7 4743 528 488 
1506 2716 31 15 12 4452 429 479 
2004 2687 23 20 7 5 4306 330 552 
3008 2593 22 10 3 8 4157 318 310 
4997 2407 8 2 2 10 3595 114 81 
7496 2150 2 1 2 8 1 3019 25 22 

10000 2025 1 2 0 7 2 2789 11 45 
13976 1996 1 0 0 5 4 2706 14 0 

119 
226 
491 
890 
487 575 
209 1256 
153 2307 
190 2476 

0 2145 
0 959 

518 
1260 
2571 

break-up of the metastable state less likely than it would be in the infinite 
system modelled by the BD equations. 

4.2. Density 5% 

Data from the 5% simulation run are shown in Table IIL The early 
part of this run was described qualitatively by Kalos eta/. (6) The main new 
phenomenon is the formation of a sizable population of "large" Clusters 
(i.e,, clusters containing more than about 10 particles) during times between 
about 10 and 500; this population then decreases again, but the sizes of the 
clusters remaining in it grow so that the total number of particles in large 
clusters continues to grow. 

Figure 2 shows a graphical comparison of the simulation data with 
Becker-D6ring calculations for 5% density, using a time rescaling factor of 
3, which corresponds to taking D = �89 in Eq. (2.4). The agreement for 
concentrations of small clusters is about as good as for 3.5%, but the BD 
equations are now called upon to make predictions about the large clusters 
as well. Here the agreement is somewhat worse; the number of large 
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Table Ilia. Additional Simulation Data at 5% Density 

cIO 20 50 
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 CI0 CI I C21 

0 4509 594 123 31 l0 2 0 5268 
0,5 3710 766 207 58 21 3 3 4760 
1 3358 785 243 89 28 8 4 1 4524 
15  3098 772 278 109 33 17 6 2 4315 
2 2968 768 285 111 42 15 14 2 2 4207 1 
3 2737 759 285 120 59 27 15 6 3 1 4012 1 
5 2554 713 299 124 74 37  13 15 0 2 3031 4 
7.5 2445 661 306 136 63 47 21 12 8 4 3703 5 

10 2394 604 250 171 79 34 26 17 5 8 3588 14 
15 2208 548 280 147 79 49 32 18 11 6 3378 23 
20 2148 563 274 135 84 49 38 19 8 7 3325 25 0 
25 2156 583 221 133 86 49 42 21 15 7 3313 23 2 
50 2017 540 226 127 74 48 43 28 15 15 3133 36 2 
75 2039 507 213 128 85 49 29 26 23 19 3118 30 5 

100 2008 505 193 103 87 51 32 20 l l  12 3022 52 7 
150 1991 485 208 98 65 46 36 25 17 12 2983 47 12 
200 1935 468 203 105 74 42 34 17 21 14 2913 47 13 
300 2009 485 198 89 71 41 28 26 10 9 2966 61 11 

3000 

2500 

2000 

1500 

1000 

500 

C1 

0 x 

O00X- 0 x x 

| • x x 

c 2 

O0 0 C~ 0 

I I 
10 100 

i L 
1000 10 000 100 000 t 

(a) 

Fig. 2. Comparison of data from two independent simulation runs (crosses and circles) with 
predictions of the Becker-D6ring equations (curves) at 5% density. The dotted lines are to 
guide the eye only. 
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T a b l e  IV. S i m u l a U o n D a t a  at  Dens i ty  7 .5% 

t c; c 2 c 3 c 4 c 5 c 6 c v c 8 c 9 C]o 

0 5790 965 310 88 35 11 11 4 1 0 
4.1 2732 936 416 252 148 101 48 34 17 10 
8.9 2474 715 374 189 157 109 58 48 32 34 

14.0 2219 657 334 185 129 94 75 68 40 29 
19.4 2121 655 290 180 126 105 69 65 45 31 
30.1 2128 582 293 149 126 81 74 60 36 39 
52.4 2043 568 243 137 108 82 60 37 47 30 
75.6 1984 484 223 162 85 57 40 50 32 28 
99.3 1971 511 197 133 79 60 49 36 25 31 

147 1961 499 218 128 83 51 39 27 28 18 
197 1963 489 195 104 73 42 28 34 18 20 
298 1850 445 173 113 52 49 25 20 22 12 
494 1786 428 171 87 46 47 26 20 21 15 
753 1877 388 141 83 56 30 15 17 11 13 

1006 1838 358 156 79 60 24 28 9 14 13 
1501 1691 357 128 72 35 18 15 15 14 4 
1997 1612 381 113 70 46 21 7 7 7 4 
3002 1639 304 119 64 22 18 7 5 3 4 
5004 1514 263 76 48 16 6 6 4 0 1 
7504 1494 296 89 29 17 7 4 1 0 1 

10199 1461 283 86 35 17 13 5 0 2 0 

clusters grows about  twice as fast as predicted by the BD equations witt 
the time scaling we have used (in the sense that any  given value is reachec 

twice as early as the equat ions predict) and  the m a x i m u m  n u m b e r  ol 
clusters conta in ing  more than 20 particles is about  50% greater that  

predicted. On  the other hand  the BD equations are fairly successful ir 
predict ing the distr ibution of large clusters after the time at which thL, 

m a x i m u m  is reached. 

As in the case of 3.5% density, the BD equations show the n u m b e r  ot 
monomers  decreasing steadily between times 100 and  10,000; bu t  this tim~ 
the rate of decrease is much faster, about  1 monome r  per 50 time steps, anc 
there is at best a rather fleeting period of approximate  constancy in c~ 
which does not  last beyond  about  t = 2000. After this time the decreasin~ 

character of c I is strong enough to be quite clear even in the simulat ior  
data, and  there is agreement  between the s imulat ion and  the BD equation~, 
about  the time at which this "metas table"  behavior  comes to  an end. 

The last graph in Fig. 2 shows that the BD equations give a good 
representat ion of the observed time variat ion of Nl~ 1, thereby increasin~ 
one's  confidence that the late increase in N=~ 1 predicted by the BE 



Kinetics of a First-Order Phase Transition 417 

Table IV. (Continued) 

t clo el ,zo e~? c~lOO C,oiSOO c5oisooo N,o N?~ N ~  N~I ~176 Nz~ ~ N~oI~ ~ 

0 7215 1 9361 14 
4.1 4694 22 1 9067 286 22 
8.9 4190 55 1 8639 713 23 

14.0 3830 77 6 8203 1030 142 
19.4 3687 98 3 7999 1293 83 
30.1 3568 109 12 7595 1491 289 
52.4 3355 1 2 5  27 6927 1735 713 
75.6 3145 129 45 6284 1875 1216 
99.3 3092 134 51 1 6037 1909 1375 54 

147 3052 99 59 7 5767 1476 1696 436 
197 2966 91 66 11 5389 1295 1998 693 
298 2761 89 63 16 1 4918 1320 1958 1064 115 
494 2647 61 57 28 1 4696 890 1814 1872 103 
753 2631 46 43 27 9 4338 683 1395 1807 1152 

1006 2579 27 29 27 13 4306 378 940 1908 1843 
1501 2349 21 18 14 24 3751 294 665 953 3712 
1997 2268 17 11 8 25 3557 248 381 55! 4638 
3002 2185 7 6 6 22 3234 83 227 513 5318 
5004 1934 1 1 3 21 1 . 2660 12 47 220 5750 686 
7504 1938 0 1 0 19 1 2642 0 25 0 5976 731 

10199 1902 1 1 1 14 4 2641 11 38 74 4246 2364 
i 

equations for 3.5% density would also be observed in the simulations if they 
were continued longer. 

4.3. Density 7.5% 

Data from the 7.5% simulation run are shown in Table IV. This run 
has already been subjected to extensive analysis by Penrose et al. ~13~ and by 
Penrose and Buhagiar. (5) The main difference from the 5% case is that the 
population of large clusters is much bigger and builds up more quickly.  

Figure 3 shows a graphical comparison of the Simulation and the 
predictions for 7.5% density. In plotting Fig. 3 we used a scaling factor of 6, 
which is equivalent to giving the factor D in our formula (2.4) for a t the 
value 1 instead of l / 6 .  With this adjustment, the agreement between theory 
and simulation is at least as good as at density 5%: the predicted growth of 
the number of large clusters in any particular size range is still too slow by 
a factor of roughly 2, but the maximum values reached are predicted fairly 
well. At this density it makes no sense to talk of even a short-lived 
metastable state; instead c I decreases steadily from start. 
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Fig. 3. Comparison of simulation data (crosses) with predictions of the Becker-D6ring 
equations (curves) at 7.5% density. 
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4 . 4 .  D e n s i t y  1 0 %  

Data from the 10% simulation run are shown in Table V, and a 
comparison with the BD equations is shown in Fig. 4. The data for large 
clusters could be matched fairly well to the solution of the BD equations by 
giving to the factor D in Eq. (2.4) the value 2.5, but then the match to the 
small-cluster data would not be good for times after about  500. No simple 
scaling of the time axis will imporve the agreement, since the value of c 1 
remains near 1600 for a longer time in the simulation than it does in the 
solution to the BD equations. 

5. DISCUSSION 

5.1. Finite-System and Fluctuation Effects 

The most we can expect from the BD equations is to predict the 
average behavior of the cluster concentrations c z obtained from many 
simulations of very large systems. Our actual simulations reported here on 
the other hand consist of a single run done on a system containing 
N = 125 x 103 sites and, depending on the density, between 4,375 and 
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Cl 

Table V. Simulation at 

C 2 C 3 C4 C 5 

Density 10% 

6'6 C7 

i 

6' 8 C 9 Clo  

0 6666 1278 471 198 
3.3 2775 955 497 285 
7.3 2346 728 403 249 

11.6 2168 608 296 205 
16.1 2051 553 287 202 
25.5 1939 562 282 175 
35.1 1939 535 216 148 
45.0 1865 501 236 160 
76.0 1907 452 211 107 
97.3 1713 457 203 116 

152 1758 397 172 89 
198 1668 413 173 99 
304 1654 377 150 73 
505 1610 334 122 70 
745 1628 325 126 68 
996 1603 308 113 64 

1503 1557 319 123 59 
2006 1568 299 95 45 
3000 1458 281 84 35 
4996 1452 271 87 38 
7151 1368 245 66 " 35 

83 51 18 13 9 3 
217 126 85 79 44 48 
168 128 97 91 60 47 
171 128 100 72 62 49 
144 133 93 67 49 36 
104 98 61 64 38 38 
130 70 65 55 46 44 
90 60 63 48 43 38 
82 65 45 46 25 30 
71 45 42 26 27 15 
59 49 32 26 17 24 
48 40 22 31 31 18 
49 36 26 17 20 12 
39 25 22 18 7 14 
44 20 13 4 9 8 
35 22 16 11 5 9 
38 12 14 7 8 3 
14 14 8 6 7 6 
I0 11 4 2 2 1 
19 8 6 3 0 0 
19 6 3 1 1 0 

3000 

2500 

2000 

1500 

1000 

500 

• 

Fig. 4. 

0 10 100 1000 10000 t 

(a) 

Comparison of simulation data (crosses) with predictions of the Becker-D6rin~ 
equations (curves) at 10% density. 
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Table V. (Continued) 

t cl 0 c~ 0 c~? c~loO Cto15O0 ~5o1~5~176176 NI, O N21o N2~lo NsIIoo NISoOO N55oj0~o 

0 8790 1 
3.3 5111 89 2 
7.3 4317 153 16 

11.6 3859 195 25 
16.1 3165 227 37 
25.5 3361 227 68 
35.1 3248 218 75 2 
45.0 3104 195 98 3 
76.0 2870 147 132 8 
97.3 2715 149 135 14 

152 
198 
304 
505 
745 
996 

1503 
2006 
3000 
4996 
7151 

2623 132 l l0  33 
2543 100 109 37 
2414 73 87 42 12 
2261 39 62 42 24 
2255 33 36 38 28 
2186 20 27 29 37 
2140 11 12 14 43 
2062 9 6 11 44 
1888 1 3 4 40 
1884 4 2 4 31 
1744 0 1 2 27 

3 
5 

I 

12489 11 
11260 1194 46 
10032 2100 368 
9039 2781 680 
8332 3187 981 
7378 3258 1864 
7068 3220 2080 132 
6617 2891 2807 185 
5780 2171 4081 468 
5220 2171 4140 860 109 
4838 1932 3371 2136 223 
4750 1479 3531 2470 270 
4229 1 1 7 5  2834 2899 1463 
3770 553 2146 2932 3099 
3632 478 1195 2801 4394 
3456 269 840 2150 5785 
3318 144 366 1071 7601 
3012 117 161 784 8426 
2600 18 112 338 9432 
2616 49 74 304 7799 1658 
2365 0 45 158 6851 3081 
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12,500 particles. We might expect a priori that finite-size effects wouh 
become relevant when clusters with concentrations per site of order N - i  o 
less begin to play an important role in the Becker-D6ring equations. Thi 
effect may be significant at the very late stages of our simulations, e.g. 
between t = 10,000 and t = 16,000 in the 3.5% run. 

More important for the early and intermediate times are the fluctua 
tions. The deviations of cluster concentrations from their average value 
will vary from one simulation run to another, and cannot be predicted iJ 
detail. It would be possible to reduce the effect of these deviations b' 
averaging over more than one simulation run, but we did not do thi 
because it would have required too much computer time. Another way o 
trying to reduce them is to average the data over limited periods of time 
For simplicity, we have not done this either for the analysis described i] 
this paper, though the method has been used in other parts of the analysi 
of these simulation runs. Its disadvantage is that one has to be careful no 
to average over too long a time interval, otherwise it is no longer possible t, 
see the details of the evolution. 
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It is desirable to have some estimate of the size of the statistical 
fluctuations in these simulations, so that when we meet a deviation between 
the BD equation and the simulations we have some idea whether to 
attribute it to fluctuations or to a genuine difference between the BD 
equations and the average they are meant to predict. One way to estimate 
such fluctuations is to compare the results of different runs at the same 
density. This is done in Fig. 2, where the circles denote the result of a 
second run, lasting up to time 300, in addition to the main one. The data 
from which this contribution to Fig. 2 was drawn are shown in Table IIIa. 
A comparison of these two runs in Fig. 2 suggests that it is quite possible 
for two runs to give values of c I differing by as much as 50 and values of r 
differing by 20, and so they may also differ from their expectation values 
by comparable amounts. These estimates are consistent with the hypothesis 
that the standard deviation of the observed values of c t is roughly equal to 
the, square root of their mean; this would hold, for example, if the observed 
values of c~ had a Poisson distribution. 

5.2. Metastabi l i ty  and The Cloud Point 

As mentioned in the Introduction, previous experimental tests of the 
BD theory have been confined to observations of the cloud point-- the 
largest supersaturation at which a metastable state is possible. This is 
obtained by first estimating the nucleation rate J for large clusters from the 
BD equations and then finding the value of the density and temperature at 
which this rate becomes of the order of 1 per observation time per cubic 
centimeter. The nucleation rate is found to be quite insensitive to the exact 
value chosen for the observation volume or time since J changes with 
density and temperature by factors like 102o in the vicinity of the cloud 
point. 

To estimate J from the BD equations one can use an approximate 
method introduced by Becker and D6ring in their 1935 paper. ~1) This 
method assumes that the clusters are in a quasisteady state with Jt in Eq. 
(2.1) independent of l. We can then deduce from Eq. (2.2) that J, the 
common value of all the Jl, satisfies 

Cl = j b 2 b s  " " " b t  1 ~ j 1 + 1_ 
~=l  a ] a 2  a/  c (  a , c ,  = a z Q t e ( ( l  - -  IO) 3 l - 4  (5.1) 

by (2.20). The series, which can be crudely approximated by its largest 
term, depends very sensitively on the point in the phase diagram to which 
the system is quenched. 

Using the extrapolation formulas (2.4) and (2.6), we find J at density 
3.5% to be about 5.4 • 10 -~~ per site per time unit. The corresponding 
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critical cluster size l* [the value of l for which Qtc(( l  - p)3t is least] is abou 
70. These numbers have the interpretation that, once the metastable state i,~ 
properly established, the number of clusters of size l* or larger is increasint 
at a rate of about 5.4 • 10- to per site per time unit, which corresponds to 
rate of 503J = 6.8 • 10 -5 per time unit on the 50 • 50 • 50 lattice used ii 
our simulations. We would therefore expect the number of clusters large: 
than 70 to reach the value 1 at about time (6.8 • 10-5)-1----15,000 
According to the detailed BD calculation, on the other hand, the rate o 
increase of the number of such clusters is smaller by a factor of at least 2 
so that even at time 15,000 the expected number of clusters larger than 70 i; 
less than 0.5; and at later times the rate of increase of the number of larg~ 
clusters becomes smaller still. It appears that the constant-J ansatz  whict 
we used in deriving (5.1), and which is also the keystone of standarc 
nucleation theory, is not a very accurate approximation at the densit 3 
considered here (3.5%). Further studies of the mathematical properties o: 
the BD equations should help to elucidate these matters. 

5.3. Other Temperatures 

One possible application of the work described here is to use the BE 
equations to predict the behavior of quenched binary alloys at temperature~ 
other than 0.59 T c. To do this we would need values for the coefficients a 
and b l at these other temperatures. A generalization of the formula (2.4) fol 
a~ to such temperatures is given in Ref, 5, and it would not be difficult tc 
generalize the formula (2.6) for w t in a similar way since the Ql for l < 1( 
are known at all temperatures. It would, however, be impossible to appl 5 
the method for temperatures close to the critical temperature, because th~ 
densities of minority atoms would become high enough to make percolatior 
effects important, and the single cluster picture on which our analysis i~ 
based would break down. 

5.4. Relation to Other Work on These Simulation Runs 

Our previous theoretical work on these simulation runs was confinec 
to the run at 7.5% overall density. (5'14) The data analysis in Ref. 1L 
indicates, as Shown in deriving (2.19)above, that for large l 

a l ~ 7 . 5  l 1/3 (5.21 

and the analysis in Ref. 5 indicates that the time variable in the Becker- 
D6ring equation with D = 1/6, denoted in Ref. 5 by ~-, is related to th~ 
time variable t in the simulation by 

= 3.3(t + 400) (5.31 



Kinetics of a First-Order Phase Transition 425 

Equation (2.17) of the present paper, generalized to values of D other than 
1/6, gives 

a t ~ 1 2 . 3 6 D l  1/3 

so that (5.2) corresponds to D = 7.6/12.36 = 0.6; and the factor 3.3 in (5.3) 
corresponds (for t >> 400) to D = 3.3/6 = 0.55. On the other hand, as noted 
in Section 4.3 above, the data analysis in the present paper indicates D --~ 1. 
This discrepancy appears to arise mainly from the fact that in the present 
paper  we did not average out the information from the early times. It seems 
likely that the effective value of D is larger at earlier times than later, 
because of the finite time necessary to establish steady-state diffusion near 
a given large cluster, but we have not at tempted to account for this effect 
here. 

We should finally mention that we have no good a priori way of 
comparing our time scale with that of real experiments on quenched binary 
alloys. Very rough estimates, involving identification of the factor D in Eq. 
(2.4) with the real diffusion constant in the material, yield a time unit of the 
order of some seconds for A1-Zn alloys at the temperature 0.59T~. An even 
greater difficulty arises in any direct comparison of our solution of the BD 
equations and the time evolution of a supersaturated vapor. The mass flow 
in the latter system involves not only diffusion but also heat conduction 
and hydrodynamic flows. These effects could entirely change the l depen- 
dence of the coefficients a t from that given in (2.4). What  effect such 
changes would have on the solutions of the BD equations is not clear to us, 
although their effect on the formula (5.1) derived using the steady-state 
ansatz would be relatively small since it would only affect the factors a t in 
the series, which do not vary nearly as rapidly with l as the factors Qx 
and c(. 
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